实体联系面临着重大的挑战,例如多产的变化和普遍的歧义,特别是在具有无数实体的高价值领域。标准分类方法遭受注释瓶颈,无法有效处理看不见的实体。零拍实体链接已成为概括的方向,以概括新实体,但它仍然需要在所有实体的培训和规范描述期间提到示例,这两者都很少在维基百科外面可用。在本文中,我们通过利用易于提供的域知识来探索实体链接的知识丰富的自我监督($ \ tt kriss $)。在培训中,它会使用域本体进行未标记的文本生成自我监控的提到示例,并使用对比学习列举一个上下文编码器。出于推理,它将自我监督的提到作为每个实体的原型,并通过将测试提及映射到最相似的原型来进行链接。我们的方法归入零拍摄和少量拍摄方法,并且可以轻松地包含实体说明和黄金如果可用的标签。使用Biomedicine作为案例研究,我们对跨越生物医学文献和临床票据的七个标准数据集进行了广泛的实验。不使用任何标记信息,我们的方法为400万UMLS实体提供$ \ TT Krissbert $,这是一个Uncer Intity Linker,它可以获得新的艺术状态,优先于先前的自我监督方法,高度为20多个绝对点。
translated by 谷歌翻译
从对话数据中提取信息特别具有挑战性,因为以任务为中心的对话的性质可以有效地传达人类隐式信息,但对机器来说是具有挑战性的。话语之间的挑战可能会有所不同,具体取决于说话者在对话中的作用,尤其是当相关专业知识跨角色不对称时。此外,随着对话中隐含地传达的信息构建更多的共享环境,挑战也可能会增加。在本文中,我们提出了新颖的建模方法MedFilter,该方法解决了这些见解,以提高识别和分类与任务相关的话语时的性能,并在这样做时对下游信息提取任务的性能产生积极影响。我们在近7,000次医生对话的语料库上评估了这种方法,其中使用MedFilter来识别与讨论的医学相关贡献(在PR曲线下的面积方面,比SOTA基线提高了10%的贡献)。确定与任务相关的话语受益于下游医疗处理,在提取症状,药物和投诉的提取方面分别提高了15%,105%和23%。
translated by 谷歌翻译
To build general robotic agents that can operate in many environments, it is often imperative for the robot to collect experience in the real world. However, this is often not feasible due to safety, time, and hardware restrictions. We thus propose leveraging the next best thing as real-world experience: internet videos of humans using their hands. Visual priors, such as visual features, are often learned from videos, but we believe that more information from videos can be utilized as a stronger prior. We build a learning algorithm, VideoDex, that leverages visual, action, and physical priors from human video datasets to guide robot behavior. These actions and physical priors in the neural network dictate the typical human behavior for a particular robot task. We test our approach on a robot arm and dexterous hand-based system and show strong results on various manipulation tasks, outperforming various state-of-the-art methods. Videos at https://video-dex.github.io
translated by 谷歌翻译
Recently, automated co-design of machine learning (ML) models and accelerator architectures has attracted significant attention from both the industry and academia. However, most co-design frameworks either explore a limited search space or employ suboptimal exploration techniques for simultaneous design decision investigations of the ML model and the accelerator. Furthermore, training the ML model and simulating the accelerator performance is computationally expensive. To address these limitations, this work proposes a novel neural architecture and hardware accelerator co-design framework, called CODEBench. It is composed of two new benchmarking sub-frameworks, CNNBench and AccelBench, which explore expanded design spaces of convolutional neural networks (CNNs) and CNN accelerators. CNNBench leverages an advanced search technique, BOSHNAS, to efficiently train a neural heteroscedastic surrogate model to converge to an optimal CNN architecture by employing second-order gradients. AccelBench performs cycle-accurate simulations for a diverse set of accelerator architectures in a vast design space. With the proposed co-design method, called BOSHCODE, our best CNN-accelerator pair achieves 1.4% higher accuracy on the CIFAR-10 dataset compared to the state-of-the-art pair, while enabling 59.1% lower latency and 60.8% lower energy consumption. On the ImageNet dataset, it achieves 3.7% higher Top1 accuracy at 43.8% lower latency and 11.2% lower energy consumption. CODEBench outperforms the state-of-the-art framework, i.e., Auto-NBA, by achieving 1.5% higher accuracy and 34.7x higher throughput, while enabling 11.0x lower energy-delay product (EDP) and 4.0x lower chip area on CIFAR-10.
translated by 谷歌翻译
Current approaches for fixing systematic problems in NLP models (e.g. regex patches, finetuning on more data) are either brittle, or labor-intensive and liable to shortcuts. In contrast, humans often provide corrections to each other through natural language. Taking inspiration from this, we explore natural language patches -- declarative statements that allow developers to provide corrective feedback at the right level of abstraction, either overriding the model (``if a review gives 2 stars, the sentiment is negative'') or providing additional information the model may lack (``if something is described as the bomb, then it is good''). We model the task of determining if a patch applies separately from the task of integrating patch information, and show that with a small amount of synthetic data, we can teach models to effectively use real patches on real data -- 1 to 7 patches improve accuracy by ~1-4 accuracy points on different slices of a sentiment analysis dataset, and F1 by 7 points on a relation extraction dataset. Finally, we show that finetuning on as many as 100 labeled examples may be needed to match the performance of a small set of language patches.
translated by 谷歌翻译
When trained on language data, do transformers learn some arbitrary computation that utilizes the full capacity of the architecture or do they learn a simpler, tree-like computation, hypothesized to underlie compositional meaning systems like human languages? There is an apparent tension between compositional accounts of human language understanding, which are based on a restricted bottom-up computational process, and the enormous success of neural models like transformers, which can route information arbitrarily between different parts of their input. One possibility is that these models, while extremely flexible in principle, in practice learn to interpret language hierarchically, ultimately building sentence representations close to those predictable by a bottom-up, tree-structured model. To evaluate this possibility, we describe an unsupervised and parameter-free method to \emph{functionally project} the behavior of any transformer into the space of tree-structured networks. Given an input sentence, we produce a binary tree that approximates the transformer's representation-building process and a score that captures how "tree-like" the transformer's behavior is on the input. While calculation of this score does not require training any additional models, it provably upper-bounds the fit between a transformer and any tree-structured approximation. Using this method, we show that transformers for three different tasks become more tree-like over the course of training, in some cases unsupervisedly recovering the same trees as supervised parsers. These trees, in turn, are predictive of model behavior, with more tree-like models generalizing better on tests of compositional generalization.
translated by 谷歌翻译
Running machine learning inference on tiny devices, known as TinyML, is an emerging research area. This task requires generating inference code that uses memory frugally, a task that standard ML frameworks are ill-suited for. A deployment framework for TinyML must be a) parametric in the number representation to take advantage of the emerging representations like posits, b) carefully assign high-precision to a few tensors so that most tensors can be kept in low-precision while still maintaining model accuracy, and c) avoid memory fragmentation. We describe MinUn, the first TinyML framework that holistically addresses these issues to generate efficient code for ARM microcontrollers (e.g., Arduino Uno, Due and STM32H747) that outperforms the prior TinyML frameworks.
translated by 谷歌翻译
State-of-the-art algorithms for Approximate Nearest Neighbor Search (ANNS) such as DiskANN, FAISS-IVF, and HNSW build data dependent indices that offer substantially better accuracy and search efficiency over data-agnostic indices by overfitting to the index data distribution. When the query data is drawn from a different distribution - e.g., when index represents image embeddings and query represents textual embeddings - such algorithms lose much of this performance advantage. On a variety of datasets, for a fixed recall target, latency is worse by an order of magnitude or more for Out-Of-Distribution (OOD) queries as compared to In-Distribution (ID) queries. The question we address in this work is whether ANNS algorithms can be made efficient for OOD queries if the index construction is given access to a small sample set of these queries. We answer positively by presenting OOD-DiskANN, which uses a sparing sample (1% of index set size) of OOD queries, and provides up to 40% improvement in mean query latency over SoTA algorithms of a similar memory footprint. OOD-DiskANN is scalable and has the efficiency of graph-based ANNS indices. Some of our contributions can improve query efficiency for ID queries as well.
translated by 谷歌翻译
在边缘计算中,必须根据用户移动性迁移用户的服务配置文件。已经提出了强化学习(RL)框架。然而,这些框架并不考虑偶尔的服务器故障,尽管很少会阻止Edge Computing用户的延迟敏感应用程序(例如自动驾驶和实时障碍物检测)的平稳和安全功能,因为用户的计算作业不再是完全的。由于这些故障的发生率很低,因此,RL算法本质上很难为数据驱动的算法学习针对典型事件和罕见事件方案的最佳服务迁移解决方案。因此,我们引入了罕见的事件自适应弹性框架火,该框架将重要性采样集成到加强学习中以放置备份服务。我们以与其对价值函数的贡献成正比的稀有事件进行采样,以学习最佳政策。我们的框架平衡了服务迁移和迁移成本之间的迁移权衡,与失败的成本以及备份放置和移民的成本。我们提出了一种基于重要性抽样的Q-学习算法,并证明其界限和收敛到最佳性。随后,我们提出了新的资格轨迹,我们的算法的线性函数近似和深Q学习版本,以确保其扩展到现实世界情景。我们扩展框架,以适应具有不同风险承受失败的用户。最后,我们使用痕量驱动的实验表明我们的算法在发生故障时会降低成本。
translated by 谷歌翻译
最后,这项工作将包括对解释的上下文形式的调查。在这项研究中,我们将包括一个时间障碍的方案,其中将测试不同水平的理解水平,以使我们能够评估合适且可理解的解释。为此,我们提出了不同的理解水平(lou)。用户研究将旨在比较不同的LOU在不同的互动环境中。将研究同时医院环境的用户研究。
translated by 谷歌翻译